J. Fac. Med. Baghdad 1994 Vol. 36 No.4

THE ASSOCIATION BETWEEN BLOOD PRESSURE, PULSE RATE AND NOISE EXPOSURE.

*Ahmad S. EL-Khawaldeh, **Hikmet Jamil

*Anniau S. L. Jorden, ** Dept. of Comm. Med. Coll. of Med. Univ. of *Ministry of Health-Jorden, **

Key Words: Blood pressure, Pulse rate, Noise, Textile, Workers, Iraq.

دراسة العلاقة بين ارتفاع ضغط الدم بمعدل النبض والتعرش للضوضاء

الخلاصة:

أجريت الدراسة في المنشأة العامة للغزل والنسيج في بغداد، وشملت ١٨٩ عامل في قسم النسيج (ضرضاء عالية) و ١٨٩ عامل من اقسام أخرى (ضوضاء واطنة). أظهرت نتائج الدراسة عدم وجود اختلاف احصائي في معدل ضغط الدم الانبساطي والانقباضي وكذلك في معدل النبض بالنسبة لجميع الاعمار وفي كلى الجنسين بين المجموعتين المتباينتين في التعرض للضوضاء. كما بينت الدراسة بأن الاعراض المرضية التي يشكو منها الافراد كانت اكثر انتشار في المجموعة المعرضة لفوضاء عالية منها في المجموعة الاخرى. اوصت الدراسة اعداد برنامج وقائي للحد من تأثير الضوضاء على صحة العاملين .

A cross-sectional study on the relationship of blood pressure (BP) and pulse rate SUMMARY: (PR) to occupational noise exposure was conducted in the Iraqi State Establishment of Cotton Industries. The study included 189 workers from the high noise exposure department (Exposed group: EG) and 189 workers from a low noise exposure departments (Reference group: RG). The study showed no siginficant difference in the mean systolic or diastolic BP in all ages and in both sexes. Also the study showed that the reported symptoms were more prevalent in EG than the RG and in both sexes. The study recommends a hearing conservation program.

It is well known that noise is a stressful stimulus(1), but the role of occupational noise exposure on inducing high blood pressure (BP) is unclear (2,3). Some authors(4,5) have suggested that prolonged exposure to noise has no effect on BP, while others (3,6,7) have found that noise did increase the B.P. Parciz poor (8) and El-Samra et.al. (9) observed among weavers an actual stressful effects of noise on the cardiovascular system. Several studies (9-11) showed that the mean systolic and diastolic BP were significantly higher after shift than befor or during the shift. Some studies (12-14) showed changes in neart rate when people were exposed to low or high level noise, but still no general pattern was reached. Our study aims to investigate the association between noise exposure, blood pressure and pulse rate as no Iraqi studies were published amony Iraqi textile workers.

MATERIALS AND METHODS :

This study was performed on 378 employees, who were at work throughout the year This study the representation of Cotton Industries (15) The arrived as exposed group (EG) and 189 as reference group (RG) at the Iraqi State Establishment of Cotton Industries (15). The EG were working in the weaving department (morning shift) in which the mean noise level was above 95 dB (A), while the RG was chosen from departments (morning shift) where the level of noise was less than 80 dB (A). Arrangements were made to examine each worker at 6.30 am and at 2.30 pm (5-10 workers daily) in the medical department where noise level was ranging between 50-60 dB (A). A questionaire form for each worker was filled; the form included general information and items on health condition, and symptoms that migh reflect non-auditory effects. The BP was measured in sitting position, in the right arm with mercury sphygmomanometer by following the method of Jonsson and Hansson⁽¹⁶⁾ after 10-15min rest Hypertension was defined according to the recommendation of the WHO Expert Committee (17): a systolic BP equal to or above 160 mmHg or diastolic BP equal to or higher than 95 mmHg. The BP of workers was recorded as the mean of two readings. The radial pulse rate (PR) was taken in the sitting posture, before and after work, to show the acute effect of noise. The body mass index (BMI) was calculated; workers with values above 40kg/m2 were excluded(18). The data were analysed by computer system (IBM); student's paired t-test were used in tables 3 and 4, while chi-square test were used in table 2.

RESULTS :

Table I shows the age and sex distribution of EG and RG together with the mean age and BMI. There was no significant difference in the family history of hypertension between the EG (18 persons) and RG (19 persons). Table 2 shows the distribution of symptoms for EG and RG with the results of chi-square test. Table 3 shows the overall change in mean systolic or diastrice BP during the work day in the EG and RG in both sexes, while table 4 shows the mean PR change during the day in the EG and RG in both sexes.

Table 1. Distribution of study Groups by age and sex.

Age Group Years	EG*			RG**		
	M	F	T	M.	F	T
less 19 20 - 29 30 - 39	80 43 24	7 23 5 7	7 103 48 31	45 35 57	5 22 16 9	5 67 51 60
Total	147	42	189	137	52	189

EG = Expose group, RG=Reference group, M=male,F=femate T= total

mean age for
$$m^* = 32.0$$
, $F^* = 20.2$

$$m^{**} = 35.0, F^{**} = 30.0$$

BmI mean ± SD

$$m^* = 22.9 \pm 3.5$$
 $F^* = 22.2 \pm 3.4$

$$m^{**} = 22.2 \pm 2.9 F^{**} = 21.5 \pm 2.6$$

Table 2. Distribution of study Groups by age and sex.

Symptom	EG		RG.		Significant value	
	No.	previate	No.	prev.rate	P	
General Fatigue	160	84.7	125	66.1	< 0.005	
Headache	114	60.0	79	41.8	< 0.001	
Dizziness	98	51.9	60	31.7	< 0.005	
Visual fatigue	85	45.0	61	32.2	< 0.005	
Palpitation	71	37.6	19	10.0	< 0.001	
Nausea	43	22.8	7	3.7	< 0.001	
Los of appetite	34	18.0	16	8.5	< 0.001	
Vomiting	11	5.8	1	0.5	< 005	

note: One worker may have more than one symptom

Prev = Prevalence, EG= Expose group.

RG = Reference group.

834

Table 3. The mean systolic and diastolic BP change during day (before work) in EG and RG by sex.

Symptom	EG	during day (before and after
	mean ± SD	RG.
2.6.10		mean ± SD
Male Before After P Female	118.8 ± 12.3 116.4 ± 10.9 > 0.05	123.5 ± 15.8 122.9 ± 14.9 > 0.05
Before After P	114.6 ± 13.3 114.8 ± 14.3 > 0.05	$ \begin{array}{c} 118.5 \pm 13.0 \\ 117.4 \pm 11.5 \\ > 0.05 \end{array} $
Diastolic		
Male		
Before	77.6 ± 8.2	79.4 ± 9.3
After	80.6 ± 8.5	79.3 ± 9.1
P	> 0.05	> 0.05
Female		
Before	74.3 ± 7.7	75.0 ± 8.2
Alter	77.0 ± 8.3	75.0 ± 7.6
P	> 0.05	> 0.05

Table 4. The mean pule rate change during day (before and after work) in EG and RG by sex.

Symptom	EG	RG.
20 L h	mean ± SD	mean ± SD
Male		
Before	77.1 ± 10.5	74.6 ± 10.1
After	77.2 ± 10.5	74.9 ± 8.9
P Female	> 0.05	> 0.05
Before	81.9 ± 9.9	81.5 ± 11.4
After	77.6 ± 8.2	79.9 ± 8.7
P	> 0.05	> 0.05

DISCUSION:
The effect of noise among 189 workers in the less-noisy area (less than 90 and 189 The effect of noise among the less-noisy area (less than 80 dB(A)). The is compared with 189 workers in the less-noisy area (less than 80 dB(A)). The is compared with the significant difference (P<0.001) between EG and RG for the results showed a highly significant difference could be due to results showed a linguity of the difference could be due to the stress and roported symptoms (Table 2); the difference could be due to the stress and roported symptoms on workers exposed to high noise level and other psychological effects of noise on workers exposed to high noise level and other psychological effects of the serious are similar to those in an other study (19). On the working conditions. These results are similar to those in an other study (19). On the working conditions. On the other hand, there was no significant difference (P>0.05) for all ages in the mean other hand, distolic BP between the two groups and in both sexes, when tested systolic or diastolic BP between the two groups and in both sexes, when tested systome of discrete work. Although the mean systolic BP showed a decrease after work before and after work. in general while the mean diastolic BP showed an increase, this alteration agrees in general willie (2,4;11). However, some studies (14,20) mentioned that prolonged with other studies (2,4;11). exposure to noise had no effect on BP and, paradoxically, other studies (16,21) found that repeated and prolonged exposure to industrial noise might be considered a contributing factor to a rise in BP (Table 3). For PR (Table 4) the increase in EG (2-3 beats / min) was higher than RG particularly in male workers, but this was not significant (P>0.05). This finding agrees with that of Dega and Kdajman⁽²²⁾. The study concluded that there were no persistent effects of long-term exposure to noise on BP and PR, but there was a temporary effect of noise on BP. Non specific complained symptoms were higher among workers in the highly noise area (weaving department) than in the less noisy area. The study recommends a hearing conservation program for the workers including the use of hearing protective device.

- PEFERENCES:

 1- Anticaglia, J., Cohen, A. Extra-auditory effects of noise as a health hazard.

 Am. Ind.Hyg. Assoc.J. 1970, 31: 277-281.
- 2- Talbott, E., Helmkamp, J., Mattheuos, K., Kuller, L., Cottington, E. and Redmond, G.Occupational noise exposure, noise induced hearing loss, and the epidemiology of high blood pressure. Am.J. Epid. 1985, 121 (4): 501-514.
- 3- Wu, T.N., Chon, F.S., and Chang, P.Y. A study of noise-induced hearing loss and blood pressure in steel mill workers. Int. Arch. Occup. Environ. Health. 1987. 59: 529-536
- 4- Cartwrigh, L.B., and Thompson, R.N. The effects of broadband noise on the cardiovasular system in normal resting adult. Am. Ind. Hyg. Assoc. J. 1975, 36(9): 653-658.

- Sanden, A., and Axelsson, A. Comparison of cardiovascular responses in noise-resistant and noise - sensitive workers. Acta. Oto. Laryngol, Suppl. 1981, 377: 77-99.
- 6- Andren, L., Hansson, L., Bjorkman, M., and Jonsson, A. Noise as a contributory factor in the development of elevated arterial pressure. Acta. Med. Scand. 1980, 207: 493-498.
- 7- Milkovic-Kraus, S. Noise-induced hearing loss and blood pressure. Int. Arch. Occup. Environ. Health. 1990, 62: 259-260.
- 8- Parvizpoor, D. Exposure and prevalence of high blood pressure among weavers in Iran. J. Occup. Med. 1976, 18: 730-731.
- 9. EL-Samra, G.H., Emara, A.M., Afifi, E.A. and Mahmoud, A.B.A.H., Some cardiovascular effects of noise. Egypt.J.Occup. Med. 1986, 10 (1): 149-156.
- 10. Jansen, G. Adverse effects of noise on iron and steel workers. Cited in Am. J. Public Health, nonauditory effects of environmental noise. 1972, 389-398.
- 11- Mossjov, J.and Ettema, J.H. Extra-auditory effects in short-term exposure to noise from a textile factory. Int. Arch. Occup. Environ. Health. 1997b, Ho:
- 12- Sokolov, E.N. Perception and the conditional reflex. Int. Arch. Arbeitsmed
- 13- Gerber, S.E., Mulac, A.and Lamb, M.E. The cardio vascular response to acoustic stimuli. Audiology, 1977, 16,1.
- 14- Cartwright, L.B., and Thompson, R.N. The effects of broadband noise on the cardio vascular system in normal resting adult. Am. Ind. Hyg. Assoe. J. 1975,
- 15- EL-Khawaldeh, A.S. Non-auditory effects of noise among employees in textile factories. MSc thesis-Dept. of Comm. Med. Coll. of Med. Univ. of Baghdad-
- 16- Jonsson, A., and Hansson, L. Prolonged exposure to a stressful stimulus (noise) as a cause of raised blood pressure in man-Lancet, 1977, 1: 86.
- 17- World Health Organization. Arterial hypertension. Technical Report eries.
- 18- Williams, S.R., Nutrition and diet energy, sixth edition. Times mirror/ mosby
- 19. Siegel, J.M., and teele, C.M. Noise level and social discrimination 1979. Cited in Noise and society (Ed Jones and Chapman), 1984, P 221-224.

- 20- Bell, A. Non-auditory effects of noise. In: Encyclopedia of Occup. Health and safety. Vol.2 International Labor office Geneva, third ed. 1984, P: 1464-1467.
- 21- Lennert, A., Martin, B., Mennart, H., Lars, P., and Andres, J. Noise exposure, noise-induced hearing loss, elevation of blood pressure and hypertension. XX International Congress on Occup. Health. Abstract 1981 Sect. 4: 202.
- 22- Dega, K. and klajman, S. The effect. of noise on some indexes of the circulatory system efficiency of shipyard qrinders. Excepta medica 1978, 3612; 90.